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Abstract—Reduced-order dynamic macromodels are an effec-
tive way to capture device behavior for rapid circuit and system
simulation. In this paper, we report the successful implementation
of a methodology for automatically generating reduced-order
nonlinear dynamic macromodels from three-dimensional (3-D)
physical simulations for the conservative-energy-domain behavior
of electrostatically actuated microelectromechanical systems
(MEMS) devices. These models are created with a syntax that
is directly usable in circuit- and system-level simulators for
complete MEMS system design. This method has been applied
to several examples of electrostatically actuated microstructures:
a suspended clamped beam, with and without residual stress,
using both symmetric and asymmetric positions of the actuation
electrode, and an elastically supported plate with an eccentric
electrode and unequal springs, producing tilting when actuated.
When compared to 3-D simulations, this method proves to be
accurate for non-stress-stiffened motions, displacements for which
the gradient of the strain energy due to bending is much larger
than the corresponding gradient of the strain energy due to
stretching of the neutral surface. In typical MEMS structures,
this corresponds to displacements less than the element thickness.
At larger displacements, the method must be modified to account
for stress stiffening, which is the subject of part two of this paper.
[448]

Index Terms—Basis-function methods, computer-aided design,
electrostatic actuation, energy methods, macromodels, modal anal-
ysis, reduced-order models.

I. INTRODUCTION

M ICROELECTROMECHANICAL systems (MEMS)
typically involve multiple energy domains, such as ki-

netic energy, elastic deformation, electrostatic or magnetostatic
stored energy, and fluidic interactions. There is great value
in being able to capture the complex multi-energy-domain
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physics into relatively compact dynamic models (implemented,
e.g., with a few coupled ordinary differential equations) so that
dynamic simulation at the circuit and system level can be done
rapidly, without solving coupled partial differential equations
at every time step. Such compact models are variously referred
to asmacromodelsor, because of the relatively few dynamic
degrees of freedom,reduced-order models.

In a recent review of this subject [1], the following desir-
able attributes for a macromodel were enumerated: analytical
(rather than numerical), correct dependence on device dimen-
sions and material properties, correct energy behavior (energy
conserving where appropriate, entropy producing when dissi-
pative), able to describe both quasi-static and dynamic behavior
for both small (linear) and large (presumably nonlinear) motions
and, most importantly, quantitative agreement with the results of
full three-dimensional (3-D) physical simulation and with ex-
periments on a suitable set of test structures. In practice, macro-
models used by designers today meet some, but not all, of these
criteria and, typically, these models are hand-built for each spe-
cific device.

We have been exploring methods to automate the construction
of nonlinear macromodels directly from physical-level simula-
tion. In this two-part paper sequence, we present an approach
that uses basis-function methods; a subject with a long history
(see below). This paper uses the linear elastic normal modes of
a device as a basis set, and reports the development of auto-
mated procedures for constructing dynamic macromodels that
accurately capture such nonlinear effects as electrostatic spring
softening and mode coupling. However, it is found that this
approach is limited to non-stress-stiffened motions, which, for
elastic bodies, are displacements for which the gradient of the
strain energy due to bending is much larger than the corre-
sponding gradient of the strain energy due to stretching of the
neutral surface. In typical MEMS structures, this corresponds
to displacements less than the element thickness. When the mo-
tions are larger, stress stiffening causes the normal modes to
fail as a good basis set. Part two of this paper [2] addresses the
stress-stiffening issue and reports a modified basis-function ap-
proach that appears to give extremely good results for an inter-
esting class of MEMS devices.

Much of the difficulty in modeling MEMS devices derives
from the tight coupling between the multiple energy domains.
Individual physical effects (elasticity or fluid mechanics) are
governed by partial differential equations, typically nonlinear.
When these equations become coupled, e.g., through the elastic
deformation of a structure that simultaneously serves as a plate
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Fig. 1. Overview of automated macromodeling process.

of a capacitor and the boundary of a compressed fluid, the com-
putational challenges of highly meshed numerical simulation
become formidable. There has been some success in coupled
quasi-static simulation, and in the development of fast solvers
for individual energy domains (see discussions in [1], [3], and
[4]), but nonlinear dynamic simulation in such coupled systems
is too cumbersome for rapid system-level simulation of device
and circuit behavior. This is especially critical when one seeks
to close a feedback loop around a device; compact yet accurate
dynamical models are essential in such cases.

Section II introduces the requisite background on basis-func-
tion methods. There follows a step-by-step discussion (with ex-
amples) of our automated method for building macromodels
based on selected linear normal modes as basis functions. This
paper concludes with a brief discussion of the stress-stiffening
problem, which is taken up in detail in [2].

II. THEORETICAL APPROACH

Fig. 1 shows a schematic view of the automated macromod-
eling process [5]. Starting with a meshed device model with
N nodes,3N spatial degrees of freedom, and6N dynamical
state variables, we construct a lower order representation with
only m degrees of freedom (withm � N ), and using energy
methods, construct analytical macromodels for the kinetic en-
ergy, the elastostatic energy, and the electrostatic energy in terms
of a suitably selected set of generalized coordinates for the de-
vice. Gradients of the energy functions, which can be calcu-
lated symbolically, then yield the dynamical equations of mo-
tion, which, in the method presented here, are constructed in a
format that is directly insertable into a system-level simulator.

Recall that the LagrangianL(q; _q; t) is a function of the
general coordinatesq, their first-time derivatives_q, and timet.
L(q; _q; t) is defined by

L(q; _q; t) = T (q; _q; t)� U (q; _q; t) (1)

whereT (q; _q; t) is the kinetic energy andU (q; _q; t) is the po-
tential energy of the system [6]. The equations of motion come
directly from Lagrange’s equations, given by

d

dt

�
@L

@ _qi

�
�
@L

@qi
= 0: (2)

There arem equations of this form, one for each generalized
coordinateqi.

A. Normal Modes as Basis Functions

In this paper, we chooseqi to be the time-dependent ampli-
tudes of a set of basis functions. We begin with the nodal dis-
placementsu(r; t), a3N -element vector, written in the form

u(r; t) = ueq +
mX
i=1

qi(t)'i(r) (3)

whereqi is the time-dependent amplitude of the basis function
'i(r), and the sum is overm basis functions (wherem� N ).
The termueq is included to account for possible relaxation of
initial stress following release of the MEMS structure, and rep-
resents the equilibrium (unforced) position of the system.

The elastic linear normal modes provide an attractive set of
candidate basis functions (see, e.g., [7]). The dynamical equa-
tions for the device, written in terms ofu’s, are

[M ]
d2u

dt2
+ Fm(u; t)� Fe(u; t) = 0 (4)

where[M ] is the usual mass matrix defined on the mesh (pre-
sumed to be time independent),Fm is the nodally defined elas-
tostatic force

Fm; i(u; t) =
@Um(u; _u; t)

@ui
(5)

andFe is the nodally defined electrical force

Fe; i =
@U �

e (u; _u; t)

@ui
(6)

where, for electrostatic actuation, the co-energyU�

e is used
instead of the energy (presuming voltage control rather than
charge control), and the corresponding force term carries an
additional minus sign [8].

For small-amplitude displacements,Fm can be linearized to
yield

[M ]
d2u

dt2
+ [K]u = Fe(u; t) (7)

where[K] is the usual stiffness matrix, which is the (time-in-
dependent) Jacobian ofFm when the device is in its equilib-
rium position. For the set of linear problems (no stress stiff-
ening), the representation with[K] is exact, and the left-hand
side can be readily diagonalized. The resulting eigenvectors are
the linear mode shapes for the device from which we will select
our basis functions'i(r). For convenience in implementing the
macromodels, we choose to normalize the basis functions to unit
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maximum amplitude. Theqi’s then provide a direct measure of
modal contribution. The resulting dynamical equations become

[MG]
d2q

dt2
+ [KG]q = Fe(q; t) (8)

where[MG] is the global mass matrix,[KG] is the global stiff-
ness matrix, and, in making this transformation to basis func-
tions, we now require that the electrostatic forceFe(q; t) be ex-
pressed in terms of the basis-function amplitudesq rather than
the nodal displacementsu. Truncating this set of equations tom
generalized coordinates accomplishes the desired model-order
reduction.

B. Kinetic and Elastic Energy

The advantage of using linear normal modes as basis func-
tions is immediately obvious. Both[MG] and[KG] are diagonal
matrices. IfMi is the global-mass-matrix entry for theith mode,
the corresponding entry in the global stiffness matrix becomes
Mi!

2

i , where!i is the undamped resonance frequency of the
ith mode. Connecting back to the Lagrangian picture, we can
immediately write

T (q; _q; t) =
X
i

1

2
Mi _q

2

i (9)

and

Um(q; _q; t) =
X
i

1

2
Mi!

2

i q
2

i : (10)

Thus, two of the three required energy functions are trivially ob-
tained when we use normal modes for basis functions. Anatha-
suresh [9] has already demonstrated this approach for electro-
static actuation, including mode-coupling and spring-softening
effects, but he required that the electrostatic force be evaluated
in u space rather thanq space, necessitating two transformations
between theu’s andq’s at each time step, and an evaluation of
Fe on theN mesh rather than in the smallerq space. Our ap-
proach is to generate an accurate analytic form ofU�

e (q) directly
in q space, from which the electrostatic force inq space is then
obtained by differentiation.

C. Electrostatic Co-Energy

In order to construct the electrostatic co-energyU�

e (q), it is
necessary to determine which modes will contribute signifi-
cantly to the device behavior, and what range of amplitude must
be considered for each important mode. Our approach begins
with a single static coupled-energy-domain 3-D quasi-static
simulation for the device under a typical example of actuation.
Let uex be the positional state calculated from this quasi-static
simulation. It is possible (e.g., with least squares via the QR
factorization algorithm [10]) to determine the coefficientsci
that constitute the best representation of the form

uex = ueq +
m

0X
i=1

ci'i (11)

wherem0 is the total number of modes being tested (typically
fewer than 30). If we assume thatuex is an example of typical

Fig. 2. Macromodeling algorithm for 3-D simulations inq space.

motion, then a sorted list of mode shapes in decreasing order
of contribution identifies which modes are important, and to
what degree. The designer can use this information to select
the number of basis functionsm to include in the macromodel
(in the examples to follow, the most complex case used only
five basis functions). Furthermore, the magnitudes of the coef-
ficientsci are used to predict the relative expected magnitudes
of theqi during device operation and, thus, serve to estimate the
extent ofq space that must be covered when constructingU�

e (q).
Once the specific mode selection is completed and the esti-

mated relative modal amplitudesci are found, the procedure for
generatingU�

e (q) is illustrated in Fig. 2. Recall that the electro-
static co-energy is defined as

U�

e (q) =
1

2
C(q)V 2 (12)

whereV is the voltage on the actuation capacitor. Since under
voltage-controlled conditions the applied voltage is independent
of motion, the gradient need only be applied to the capacitance,
thus

Fe =

�
1

2
V 2

�
rC: (13)

Full 3-D capacitance simulation is run several times for
values of the generalized coordinates that adequately span the
predetermined operating range for the device.1 We then select
a rational fraction of multivariate polynomials to represent
the capacitance function, and use the Levenberg–Marquardt
nonlinear function fitting scheme [11] to find the parameters
that best fit this generalized form. Recall that the capacitance
of a large parallel-plate capacitor neglecting fringe field effects
is given by"0A=d, whereA is the area of the plate andd is the
distance between the plates. Our generalized coordinates would

1The sample point generator in Fig. 2 is based on an algorithm that efficiently
selects a set of well-spaced random points to fill the selectedq space. Details
and the source code are available in [5].
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most closely correspond to a change in the gapd. Thus, it
makes sense that our analytical form should have denominator
terms in addition to numerator terms. The specific form is

C(q) =

R1X

i1=0

R2X

i2=0

� � �

RmX

im=0

ai1i2 ��� imq
i1
1
qi2
2

� � � qimm

S1X

i1=0

S2X

i2=0

� � �

SmX

im=0

bi1i2 ��� im
qi1
1
qi2
2

� � � qimm

: (14)

The designer must specify the order of terms for each basis func-
tion, after which the generation of simulations and the fitting
procedures are done automatically. For convenience in labeling
the complexity of the capacitance fitting function, we shall refer
to (14) as a model with the label

[R1 R2 � � � Rm=S1 S2 � � � Sm ]: (15)

This same approach can be applied to other energy domains,
but only if the selected mode shapes yield good estimates of
the relevant energy function. In the case of elastic deformation,
e.g., it will be shown in [2] that the linear normal modes fail
to capture the stress-stiffened elastic energy function. However,
Varghese [12] has recently applied this method to Lorentz-force
magnetic actuation with good results.

D. Assembling the Equations of Motion

We now combine the macromodels for the kinetic, electro-
static, and elastostatic energy domains. Using the kinetic-do-
main representation from (9), the elastic-domain representation
from (10), and the electrostatic-domain representation from
(14), and correctly accounting for the use of electrostatic
co-energy instead of energy, our equations of motion become

Mi�qi +Mi!
2

i qi =
1

2
V (t)2

@C(q)

@qi
: (16)

Since our representation of the capacitanceC(q) is an an-
alytical function, we can compute the gradient of this func-
tion analytically rather than numerically. This avoids the pos-
sibility of numerical errors creating hidden energy sources or
sinks, thereby creating or destroying energy arbitrarily within
our equations of motion.

Finally, the resulting equations of motion are written to an
analog hardware description language input file.2 Note that all
data extraction, macromodel generation, equation of motion
assembly, and input file exportation are done automatically
by computer. The initial investment of time to generate the
macromodel in the form of a circuit-simulator input file need
only be made once. This input file may then be used repeatedly
for any number of dynamic simulations, including systems
with feedback.

III. EXAMPLES AND RESULTS

Let us walk through the steps of the automated macromod-
eling process for a mechanically nontrivial example. We choose

2The specific format is for the SABER System (Analogy Inc., Beaverton,
OR. [Online]. HTTP: http://www.analogy.com). Modification for other analog
hardware description languages is straightforward.

Fig. 3. Example: asymmetric suspended plate with unequal support beams and
an off-center actuation electrode.

a 125� 155� 3�m plate suspended by four 85� 15�m beams.
Two of the beams are 3-�m thick, one is 2-�m thick, and one
is 1-�m thick. At the corner with the weakest support beam, a
62.5� 70 �m electrode is placed underneath, separated from
the plate by a 4-�m gap. This device is made out of polysilicon
with a Young’s modulus of 165 GPa and a Poisson ratio of 0.23.
Due to the unequal beam thicknesses and the off-centered elec-
trode, this structure displaces, bends, and tilts upon actuation
with a voltage.

The results presented here were computed on a Sun Ultra-1
Model 170 workstation with 196-Mb RAM running SunOS 5.5.
Microcosm MEMCAD,3 in conjunction with ABAQUS4 and
FastCap [16] was used to execute full 3-D simulation. SABER
was used to execute the circuit simulation of the resulting
macromodeled equations of motion. All the remaining steps
were computed with a tool suite collectively referred to as the
CHURN process. Full details and source codes for CHURN
are available in [5].

We first construct a solid model using the MEMCAD system,
and mesh it to create the finite-element model (FEM) of the
structure. Fig. 3 depicts the FEM with the perpendicular axis
magnified 20� for clarity. The FEM is comprised of 318
20-node brick elements, with a total of 2814 nodes.

We then execute a single quasi-static coupled simulation
using CoSolve-EM (part of MEMCAD). We select a voltage
of 100 V, which is 61% of the pull-in voltage for this structure.
This required four relaxation iterations to converge, requiring
7.5 min to compute. The resulting deformation is depicted in
Fig. 4.

Next, we determine the first 30 mode shapes for this de-
vice using the modal-analysis feature of ABAQUS (embedded
within MEMCAD). This required 11.6 min to compute. We now
project the quasi-static solution onto the mode shapes using the
QR factorization module of the CHURN package. Table I iden-
tifies the ten most significant modes contributing to this defor-
mation in decreasing order of contribution magnitude, rounded
to two significant figures.

Fig. 5 shows thefive mode shapes that were selected to be
used as basis functions. Table II presents the calculated infor-
mation about each of these modes.

3Microcosm Technologies, Cambridge, MA. http://www.memcad.com
4Hibbitt, Karlsson, and Sorensen Inc., Pawtucket, RI. http://www.hks.com
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Fig. 4. Quasi-static response of asymmetric suspended plate with 100-V
actuation.

TABLE I
PROJECTION OF QUASI-STATIC RESPONSE

OF FIG. 4 ONTO MODE SHAPES

Using the CHURN procedure of Fig. 2, we perform 250 ca-
pacitance calculations that span the required portion ofq space
and fit a[43322=32211] multivariate polynomial fraction, which
has 863 fitting parameters. The resulting�2 = 4:30�10�5. The
capacitance computations required 1.9 h; the analytical fit and
gradient computation to yieldFe(q) required 30.7 min.

In Figs. 6 and 7, we present examples of system-level dy-
namic simulations of our macromodel for this structure. On av-
erage, these took 2 min to compute. In Fig. 6, we observe that the
relatively large response of Mode 1 to the sawtooth waveform
appears as a quasi-static peak in the other modes, followed by
characteristic ringing in each mode when the load is quickly re-
moved. This demonstrates that nonlinear mode coupling is cap-
tured by the macromodel. In Fig. 7, we observe complex modal
waveforms depending on the exact timing of the square pulses
with the phase in each mode.

Figs. 8–10 depict three other example structures, which we
macromodeled using this automated process in order to develop
some timing and performance metrics. In all three cases, the
material constants were the same: Young’s modulus of 165 GPa
and a Poisson ratio of 0.23. In Table III, we summarize and
compare the key statistics for all four structures and, in Fig. 11,
we present a comparison of macromodeling computation times.
We note that even the most complex example took only a few
hours for complete macromodel construction.

Fig. 5. Mode shapes used to comprise basis set.

TABLE II
MODAL MASSES, RESONANT FREQUENCIES, AND STIFFNESSES

Fig. 6. Response to a 100-V sawtooth wave with 20-�s rise, 5-�s hold, and
50-�s period.

IV. COMPARISON TOQUASI-STATIC ANALYSIS

An important issue is the accuracy of the extracted macro-
model. The most direct comparison is to simulate dynamical
transients using the macromodel and explicit FEM calculations.
This kind of comparison is shown and discussed in [2]. Another
comparison is to take the dynamical equations of motion and set
the time derivatives to zero (the quasi-static case). The result is a
set of coupled algebraic equations whose solution should agree
with the quasi-static meshed simulation using CoSolve-EM over
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Fig. 7. Response to a 100-V square wave with 1-�s hold and 10-�s period.

Fig. 8. Example: clamped 100� 20� 0.5�m fixed-fixed beam with zero
residual stress suspended 2�m above an equal-sized fixed electrode.

a wide range of applied voltages. As a practical matter, we can
find this quasi-static solution for the macromodel equations by
adding damping to the equations of motion and applying a step
excitation in the SABER simulator.

We shall use the clamped beam depicted in Fig. 8 for this
comparison, and consider only one generalized coordinate, cor-
responding to the fundamental mode. A negative value for this
mode corresponds to the structure bending toward the electrode.

Fig. 12 shows a comparison between the quasi-static modal
amplitude obtained from the linearized macromodel and the
3-D quasi-static coupled electromechanical simulation with Co-
Solve-EM. We observe that for small voltages and displace-
ments, there is good agreement, but when the displacement ap-
proaches about half the beam thickness of 0.5�m, there are
substantial departures. The actual structure appears much stiffer

Fig. 9. Example: prestressed 600� 40 � 2 �m fixed-fixed beam with
compliant supports and an initial compressive stress of 4 MPa suspended 2�m
above an equally sized fixed electrode.

Fig. 10. Example: 600� 40 � 2 �m fixed-fixed beam with zero residual
stress, suspended 2�m above a 70� 100 �m electrode that is located
lengthwise under the beam, 80�m away from the near support.

Fig. 11. Summary of computation times for examples.

than the linear macromodel. This is because as the clamped
beam bends, it must get longer. Thus, there is an axial stress
that must accompany bending, and the elastic stored energy as
a result of this axial extension adds to the overall stiffness of the
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TABLE III
SUMMARY OF RESULTS FOREXAMPLES

Fig. 12. Comparison of linear and nonlinear macromodels to quasi-static
simulation with CoSolve-EM.

structure. This kind of stress-stiffening is a well-known effect in
mechanics (see, for example [14]).

It is reasonable to ask whether the same CHURN method
that was used for finding the electrostatic co-energy could be
used to find an improved representation for the mechanical
stored energy, replacing the linearized form ofUm(q) in (10)
with a numerically derived analytical function that could be
differentiated to yieldFm. The third curve (labeled nonlinear
model) in Fig. 12 shows the modal amplitude versus voltage for
this case. It is seen that the nonlinear model derived with the
CHURN process applied to the elastic energy errs in the oppo-
site direction, producing a macromodel that is much too stiff.
We understand the reason for this: the modal displacements
used in the electrostatic CHURN process constrain all three de-
grees of freedom for every node. While this can yield accurate
representations forexternaleffects, such as capacitance, it can
be very incorrect forinternal effects. For example, when using
modal displacements, Poisson contractions are prohibited, and
axial displacements that accompany shear during bending are
prohibited. As a result, the nodal positions that result from
applying a modal displacement are not at their quasi-static
equilibrium positions, and this departure from equilibrium

creates additional stored elastic energy, increasing the apparent
stiffness.

It will be shown in [2] that the CHURN approach can still be
used in many cases, but not using the original linearized modes
as basis functions for calculating the strain energy. Instead, a
slightly modified set of basis functions must be used.

V. CONCLUSIONS

We have presented a method for macromodeling two-con-
ductor electromechanical devices without dissipation, and we
have successfully applied this to the electrostatic actuation of a
suspended beam and an elastically supported plate with an ec-
centric electrode and unequal springs. The technique can be ex-
tended to more conductors by calculating the complete capac-
itance matrix as functions of the modal displacements, some-
thing that FastCap does quite efficiently. The technique can also
be extended to conservative energy domains that are external
to the elastic body, such as magnetostatic actuation [12]. How-
ever, the method cannot handle dissipative effects, such as fluid
damping. When dissipation is present, it is necessary to con-
sider both_q andq as state variables so the state cannot be eval-
uated quasi-statically. One promising approach is the use of
a small number of explicitly calculated dynamical transients,
from which basis functions are extracted empirically [15], [16].

An important benefit of the automated macromodeling ap-
proach presented here is that it minimizes the number of itera-
tive (time-consuming) self-consistent coupled simulations that
must be performed. A single such simulation is used to get es-
timates of the size of the modal work space, but all simulations
thereafter are single energy domain, hence, fast. Further, as an
aid to the designer, the macromodel is automatically exported
as a circuit-simulator network element.

Finally, we note that the most complex design studied here
only required a few hours for complete construction of the
macromodel (after meshing). This means that a designer could
create the design, and within one day evaluate the dynamical
performance of the device in a feedback loop. This appears to
be a very useful step toward speeding up the overall design
process without sacrificing accuracy.
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