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Computer-Aided Generation of Nonlinear
Reduced-Order Dynamic Macromodels—I:
Non-Stress-Stiffened Case

Lynn D. Gabbay, Jan E. Mehner, and Stephen D. Sentteitow, IEEE

Abstract—Reduced-order dynamic macromodels are an effec- physics into relatively compact dynamic models (implemented,
tive way to capture device behavior for rapid circuit and system e g., with a few coupled ordinary differential equations) so that
simulation. In this paper, we report the successful implementation dynamic simulation at the circuit and system level can be done

of a methodology for automatically generating reduced-order . . - . . . .
nonlinear dynan?i)(/: macromodels fr)(/)n? three-di%wensional (3-D) rapidly, without solving coupled partial differential equations

physical simulations for the conservative-energy-domain behavior at every time step. Such compact models are variously referred
of electrostatically actuated microelectromechanical systems to asmacromodel®r, because of the relatively few dynamic
(MEMS) devices. These models are created with a syntax that degrees of freedomeduced-order models

is directly usable in circuit- and system-level simulators for In a recent review of this subject [1], the following desir-
complete MEMS system design. This method has been applied - . .

to several examples of electrostatically actuated microstructures: able attributes for "f‘ macromodel were enumerated.. anal_ytlcal
a suspended clamped beam, with and without residual stress, (rather than numerical), correct dependence on device dimen-
using both symmetric and asymmetric positions of the actuation sions and material properties, correct energy behavior (energy
electrode, and an elastically supported plate with an eccentric conserving where appropriate, entropy producing when dissi-
electrode and unequal springs, producing tilting when actuated. 44ive) aple to describe both quasi-static and dynamic behavior
When compared to 3-D _S|mulat|ons_, this _method proves to _be for both (i dl bl i .
accurate for non-stress-stiffened motions, displacements for which orbo Sma (linear) an afge (presuma ynon. inear) motions
the gradient of the strain energy due to bending is much larger @nd, mostimportantly, quantitative agreementwith the results of
than the corresponding gradient of the strain energy due to full three-dimensional (3-D) physical simulation and with ex-
stretching of the neutral surface. In typical MEMS structures, periments on a suitable set of test structures. In practice, macro-
this corresponds to displacements less than the elg_ment thlckness.mode|S used by designers today meet some, but not all, of these
At larger displacements, the method must be modified to account . . . .

for stress stiffening, which is the subject of part two of this paper. C.rl.terla Qnd, typically, these models are hand-built for each spe-
[448] cific device.

Index Terms—Basis-function methods, computer-aided design, we h.ave been exploring mgthods to automa!te the COHS.tFUCtIOI’I
electrostatic actuation, energy methods, macromodels, modal anal- ‘?f nonllne'ar macromodels directly from physical-level simula-
ysis, reduced-order models. tion. In this two-part paper sequence, we present an approach
that uses basis-function methods; a subject with a long history
(see below). This paper uses the linear elastic normal modes of
a device as a basis set, and reports the development of auto-

ICROELECTROMECHANICAL systems (MEMS) mated procedures for constructing dynamic macromodels that
M typically involve multiple energy domains, such as kiaccurately capture such nonlinear effects as electrostatic spring
netic energy, elastic deformation, electrostatic or magnetostai@ftening and mode coupling. However, it is found that this
stored energy, and fluidic interactions. There is great val@pproach is limited to non-stress-stiffened motions, which, for
in being able to capture the complex multi-energy-domagiastic bodies, are displacements for which the gradient of the
strain energy due to bending is much larger than the corre-
sponding gradient of the strain energy due to stretching of the
neutral surface. In typical MEMS structures, this corresponds
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Construct whereT'(g, ¢, t) is the kinetic energy anbl (g, ¢, t) is the po-
Me(s,f,’ﬁ%:,\gg()’e' tential energy of the system [6]. The equations of motion come
+ directly from Lagrange’s equations, given by
Select
m Basis q 6_L — 8_L =0 (2)
Functions dt \ 9q; dqi '
' ' ! Th [ f this f f h lized
Kinetic Electroatatle Electontatic ere arem equations of this form, one for each generalize
Macromodel Macromodel Macromodel coordinatey; .
— 1
A + / A. Normal Modes as Basis Functions
Assemble . ) .
ﬁ?ﬁé{?:: In this paper, we choosg to be the time-dependent ampli-
tudes of a set of basis functions. We begin with the nodal dis-
+ placementsi(r, t), a3N-element vector, written in the form
Insert in
sirsm -
imulator
u(r, 1) = teq + Z qi(t)pi(r) 3)

i=1
Fig. 1. Overview of automated macromodeling process.
whereg; is the time-dependent amplitude of the basis function

(), and the sum is over: basis functions (where: < N).

of a capacitor and the boundary of a compressed fluid, the Coﬁe termucq is included to account for possible relaxation of

putational chz_zlllenges of highly meshed numerical S'.mUIatl(?rqiti | stress following release of the MEMS structure, and rep-
become formidable. There has been some success in couple o o
resents the equilibrium (unforced) position of the system.

quasi-static simulation, and in the development of fast SOlverSThe elastic linear normal modes provide an attractive set of
for individual energy domains (see discussions in [1], [3], and

. o T candidate basis functions (see, e.g., [7]). The dynamical equa-
[4]), but nonlinear dynamic simulation in such coupled systems : . .
. . : : -tions for the device, written in terms afs, are
is too cumbersome for rapid system-level simulation of device
and circuit behavior. This is especially critical when one seeks d’u
to close a feedback loop around a device; compact yet accurate [M] = T Fin(u, t) — Fe(u, 1) =0 4)
dynamical models are essential in such cases.

Section Il introduces the requisite background on basis-funwhere[ /] is the usual mass matrix defined on the mesh (pre-
tion methods. There follows a step-by-step discussion (with estdamed to be time independent),, is the nodally defined elas-
amples) of our automated method for building macromodetisstatic force

based on selected linear normal modes as basis functions. This

paper concludes with a brief discussion of the stress-stiffening Fri(u, t) = M (5)
problem, which is taken up in detail in [2]. u;
and F, is the nodally defined electrical force
U (u, i, t)
Il. THEORETICAL APPROACH Fei = Ou; 6)

Fig. 1 shows a schematic view of the automated macromatbere, for electrostatic actuation, the co-enetdy is used
eling process [5]. Starting with a meshed device model witAstead of the energy (presuming voltage control rather than
N nodes,3N spatial degrees of freedom, afAd@ dynamical charge control), and the corresponding force term carries an
state variables, we construct a lower order representation wagditional minus sign [8]. S
only m degrees of freedom (with < V), and using energy For small-amplitude displacements,, can be linearized to
methods, construct analytical macromodels for the kinetic eyield
ergy, the elastostatic energy, and the electrostatic energy in terms £
o_f a suitabl_y selected set of generali_zed coor_dinates for the de- [M] d_;‘ + [KJu= F.(u, t) 7)
vice. Gradients of the energy functions, which can be calcu- t

lated symbolically, then yield the dynamical equations of MQPhere[ K] is the usual stiffness matrix, which is the (time-in-

tion, which, in the method presented here, are constructed iB@pendent) Jacobian ¢f, when the device is in its equilib-
format that is directly insertable into a system-level simulator,; ., position. For the set of linear problems (no stress stiff-
Recall that the Lagrangiah(q, ¢, ) is a function of the ening), the representation wiffk] is exact, and the left-hand
general coordinates their first-time derivativeg, and timet.  giqe can be readily diagonalized. The resulting eigenvectors are
L(q, ¢, 1) is defined by the linear mode shapes for the device from which we will select
our basis functiong; (). For convenience in implementing the
Lig, ¢, ) =T(q,4,t) = Ulg, ¢, t) (1) macromodels, we choose to normalize the basis functions to unit
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maximum amplitude. The;’s then provide a direct measure of - # data points (n)
modal contribution. The resulting dynamical equations becom: __ generate

repeat
ntimes

2

4 4 [Kelg = Fug, 1) 8)

[Mg] e

for each =1..n

where[M] is the global mass matrixK¢] is the global stiff- Sggﬁ':r;girm operating range
ness matrix, and, in making this transformation to basis func a forq

tions, we now require that the electrostatic fof¢:éq, ¢) be ex-
pressed in terms of the basis-function amplitugeather than
the nodal displacements Truncating this set of equations:to
generalized coordinates accomplishes the desired model-ord form of

Full 3D
Simulator o
g CA]

reduction. analytical
function Data Storage
B. Kinetic and Elastic Energy i A4

The advantage of using linear normal modes as basis fun( Fit Analytical
tions is immediately obvious. Boftd/;] and[ K ] are diagonal | Function fo Data

matrices. IfM; is the global-mass-matrix entry for thiga mode, l
the corresponding entry in the global stiffness matrix become ;%
M;w?, wherew; is the undamped resonance frequency of the fa
ith mode. Connecting back to the Lagrangian picture, we can
immediately write Fig. 2. Macromodeling algorithm for 3-D simulationsdrspace.
T(g, ¢,t) = Z %Miq'f (9) motion, then a sorted list of mode shapes in decreasing order
2

of contribution identifies which modes are important, and to

what degree. The designer can use this information to select
) the number of basis functions to include in the macromodel

Un(q, 4, 1) = Z 3 Miwlq?. (10) (_|n the gxampl_es to follow, the most comple_x case used only
S five basis functions). Furthermore, the magnitudes of the coef-
) ) . ficients¢; are used to predict the relative expected magnitudes
Thus, two of the three required energy func’qons are trivially olyy theq; during device operation and, thus, serve to estimate the

tained when we use normal modes for b_a5|s functions. Anathgs ¢ of space that must be covered when construdiing).

suresh [9] has already demonstrated this approach for electroonCe the specific mode selection is completed and the esti-

static actuation, including mode-coupling and spring-softenir?]qated relative modal amplitudesare found, the procedure for
effects, but he required that the electrostatic force be evalua erating/* (¢) is illustrated in Fig. 2. Recall that the electro-
: . 2.

in u space rather thanspace, necessitating two transformationg; ;. co-energy is defined as

between the:'s andq’s at each time step, and an evaluation of

I, on the N mesh rather than in the smallgispace. Our ap- Ur(q) = lC(q)Vz (12)
proach is to generate an accurate analytic foriijdiy) directly ‘ 2

in ¢ space, from which the electrostatic forcejispace is then whereV is the voltage on the actuation capacitor. Since under

and

obtained by differentiation. voltage-controlled conditions the applied voltage is independent
) of motion, the gradient need only be applied to the capacitance,
C. Electrostatic Co-Energy thus
In order to construct the electrostatic co-enetgy(q), it is 1
necessary to determine which modes will contribute signifi- Fe= (5 V2>VC~ (13)

cantly to the device behavior, and what range of amplitude must
be considered for each important mode. Our approach begingull 3-D capacitance simulation is run several times for
with a single static coupled-energy-domain 3-D quasi-statialues of the generalized coordinates that adequately span the
simulation for the device under a typical example of actuatiopredetermined operating range for the devid#&/e then select

Let uex be the positional state calculated from this quasi-static rational fraction of multivariate polynomials to represent
simulation. It is possible (e.g., with least squares via the QRe capacitance function, and use the Levenberg—Marquardt
factorization algorithm [10]) to determine the coefficiemts nonlinear function fitting scheme [11] to find the parameters
that constitute the best representation of the form that best fit this generalized form. Recall that the capacitance
of a large parallel-plate capacitor neglecting fringe field effects
is given bysoA/d, whereA is the area of the plate ants the

m
Uex = Ueq + Z; Cipi (11) distance between the plates. Our generalized coordinates would
1=

i

. . . 1The sample point generator in Fig. 2 is based on an algorithm that efficiently
/
wherem’ is the total number of modes belng tested (typ|ca||¥elects a set of well-spaced random points to fill the selectephce. Details

fewer than 30). If we assume that, is an example of typical and the source code are available in [5].
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most closely correspond to a change in the gafhus, it
makes sense that our analytical form should have denominator
terms in addition to numerator terms. The specific form is

Ri R Ry o
DT it e gy
i1=045,=0 i =0

C(q) = 2151 2252 ZSm ! (14)
SO S b i
$1=045=0 T =0

The designer must specify the order of terms for each basis func-

tion, after which the generation of simulations and the fitting

procedures are done automatically. For convenience in labeling ' _

the complexity of the capacitance fitting function, we shall reféfd-3- Example: asymmetric suspended plate with unequal support beams and
. ’ an off-center actuation electrode.

to (14) as a model with the label

[Ri Ry -+ Rm/S1 Sy -+ Sml (15) a125x 155x 3 um plate suspended by four 8515 xm beams.

Two of the beams are @m thick, one is 2zm thick, and one

14 -um thick. At the corner with the weakest support beam, a
.5x 70 um electrode is placed underneath, separated from

This same approach can be applied to other energy doma
but only if the selected mode shapes yield good estimates

the relevant energy function. In the case of elastic deformati Re plate by a 4¢em gap. This device is made out of polysilicon

e.g., it will be shown n [2] that the_ linear normal_ modes fa'with a Young's modulus of 165 GPa and a Poisson ratio of 0.23.
to capture the stress-stiffened elastic energy function. HowevB[je to the unequal beam thicknesses and the off-centered elec-
Varghese [12] has recently applied this method to Lorentz-for

. . : ffode, this structure displaces, bends, and tilts upon actuation
magnetic actuation with good results. with a voltage.
The results presented here were computed on a Sun Ultra-1
Model 170 workstation with 196-Mb RAM running SunOS 5.5.
We now combine the macromodels for the kinetic, electr@gicrocosm MEMCAD? in conjunction with ABAQUS and
static, and elastostatic energy domains. Using the kinetic-g;stCap [16] was used to execute full 3-D simulation. SABER
main representation from (9), the elastic-domain representatigfs used to execute the circuit simulation of the resulting
from (10), and the electrostatic-domain representation frofacromodeled equations of motion. All the remaining steps
(14), and correctly accounting for the use of electrostatiGere computed with a tool suite collectively referred to as the
co-energy instead of energy, our equations of motion becomgURN process. Full details and source codes for CHURN
) , 1 , 0C(q) are available in [5].
Migi + Miwiqi = 5 V(1) R (16)  We first construct a solid model using the MEMCAD system,
qi . .
and mesh it to create the finite-element model (FEM) of the
Since our representation of the capacitafte) is an an- structure. Fig. 3 depicts the FEM with the perpendicular axis
alytical function, we can compute the gradient of this funanagnified 26« for clarity. The FEM is comprised of 318
tion analytically rather than numerically. This avoids the po20-node brick elements, with a total of 2814 nodes.
sibility of numerical errors creating hidden energy sources orWe then execute a single quasi-static coupled simulation
sinks, thereby creating or destroying energy arbitrarily withinsing CoSolve-EM (part of MEMCAD). We select a voltage
our equations of motion. of 100 V, which is 61% of the pull-in voltage for this structure.
Finally, the resulting equations of motion are written to afhis required four relaxation iterations to converge, requiring
analog hardware description language input#ildote that all 7.5 min to compute. The resulting deformation is depicted in
data extraction, macromodel generation, equation of moti@iyg. 4.
assembly, and input file exportation are done automaticallyNext, we determine the first 30 mode shapes for this de-
by computer. The initial investment of time to generate thdce using the modal-analysis feature of ABAQUS (embedded
macromodel in the form of a circuit-simulator input file needvithin MEMCAD). This required 11.6 min to compute. We now
only be made once. This input file may then be used repeateghpject the quasi-static solution onto the mode shapes using the
for any number of dynamic simulations, including system@R factorization module of the CHURN package. Table | iden-
with feedback. tifies the ten most significant modes contributing to this defor-
mation in decreasing order of contribution magnitude, rounded
[ll. EXAMPLES AND RESULTS to two significant figures.

Let us walk through the steps of the automated macromod-F'dg' ° EhO\,NSf thé[[\(e mo_l(_jeblshﬁpes thai V\ﬁre selle(‘iteiddtq l?e
eling process for a mechanically nontrivial example. We choo¥g®d as Dasis functions. 1aple If presents the caicutated infor-
mation about each of these modes.
2The specific format is for the SABER System (Analogy Inc., Beaverton, oy ) .
OR. [Online]. HTTP: http://www.analogy.com). Modification for other analog °Microcosm Technologies, Cambridge, MA. http://www.memcad.com
hardware description languages is straightforward. 4Hibbitt, Karlsson, and Sorensen Inc., Pawtucket, RI. http://www.hks.com

D. Assembling the Equations of Motion
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Fig. 5. Mode shapes used to comprise basis set.

TABLE I
Fig. 4. Quasi-static response of asymmetric suspended plate with 100-V MODAL MASSES RESONANT FREQUENCIES AND STIFFNESSES
actuation.

Mode Mass Frequency | Stiffness | Period
Number (kg) (Hz) (N/m) (us)
1 4.34E-11 121 25.1 8.26
2 3.54E-11 273 104.2 3.66
TABLE | 3 3.14E-11 424 222.9 2.36
PROJECTION OF QUASI-STATIC RESPONSE 4 1.19E-11 931 407.3 1.07
OF FIG. 4 ONTO MODE SHAPES 7 1.54E-12 1,267 974 0.79
mode # | contribution
1 2046 D 1o
2 0.042 2
3 0.025 ES
7 0.0057 -
4 -0.0052 g w
8 -0.0012 & @
6 0.00090 3 N R N N NP AVAVA
10 -0.00070 g
14 0.00050 20
15 -0.00049 006
o™ 004
g AWMW
g 8.0

Using the CHURN procedure of Fig. 2, we perform 250 ca- o
pacitance calculations that span the required portionsgface
and fit a[43322/32211] multivariate polynomial fraction, which
has 863 fitting parameters. The resultifg= 4.30 x 10~5. The o
capacitance computations required 1.9 h; the analytical fit and _ 2=
gradient computation to yiel#l.(¢) required 30.7 min. oans M

In Figs. 6 and 7, we present examples of system-level dy- :E’:E
namic simulations of our macromodel for this structure. On av- 0.0z
erage, these took 2 min to compute. In Fig. 6, we observe thatthe 3 - W
relatively large response of Mode 1 to the sawtooth waveform g -oses
appears as a quasi-static peak in the other modes, followed br ™ =TT = &= = = &
characteristic ringing in each mode when the load is quickly re- time (sec)
moved. This demonstrates that nonlinear mode coupling is cap- _ _
tured by the macromodel. In Fig. 7, we observe complex mo _ﬁ'peﬁgj.ponse t0 2 100-V sawtooth wave withyZ0rise, Sus hold, and
waveforms depending on the exact timing of the square pulses
with the phase in each mode.

Figs. 8p—10 depict three other example structures, which we IV. COMPARISON TOQUASH-STATIC ANALYSIS
macromodeled using this automated process in order to developn important issue is the accuracy of the extracted macro-
some timing and performance metrics. In all three cases, tim@del. The most direct comparison is to simulate dynamical
material constants were the same: Young’s modulus of 165 Geansients using the macromodel and explicit FEM calculations.
and a Poisson ratio of 0.23. In Table Ill, we summarize anthis kind of comparison is shown and discussed in [2]. Another
compare the key statistics for all four structures and, in Fig. 1Jdgmparison is to take the dynamical equations of motion and set
we present a comparison of macromodeling computation timése time derivatives to zero (the quasi-static case). The resultis a
We note that even the most complex example took only a fesgt of coupled algebraic equations whose solution should agree
hours for complete macromodel construction. with the quasi-static meshed simulation using CoSolve-EM over

0.0

mode 3

mode 7
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Fig. 7. Response to a 100-V square wave withslhold and 1Q+s period.

Fig. 10. Example: 600« 40 x 2 um fixed-fixed beam with zero residual
stress, suspended 2m above a 70x 100 um electrode that is located
lengthwise under the beam, 8@ away from the near support.

14000
Modal Analysis
o 12000 CoSolve EM -
i(h)/ [ Modal Projection
10000 H . .

Fig. 8. Example: clamped 108 20 x 0.5 um fixed-fixed beam with zero & [ Capacitance Calculation
residual stress suspendeg above an equal-sized fixed electrode. = 2000 /7 Fit and Gradient

g

3=t

<

a wide range of applied voltages. As a practical matter, we calé 6000

find this quasi-static solution for the macromodel equations byg

adding damping to the equations of motion and applying a stef© 4000

excitation in the SABER simulator.

comparison, and consider only one generalized coordinate, co o Le - ////////

responding to the fundamental mode. A negative value for this Clamped  Pre-Swessed  Asymmetric  Asymmetric

mode corresponds to the structure bending toward the electrod Beam Beam Beam Plate
Fig. 12 shows a comparison between the quasi-static modal o

amplitude obtained from the linearized macromodel and thig- 11 Summary of computation times for examples.

3-D quasi-static coupled electromechanical simulation with Co-

Solve-EM. We observe that for small voltages and displacdan the linear macromodel. This is because as the clamped

ments, there is good agreement, but when the displacementlzgam bends, it must get longer. Thus, there is an axial stress

proaches about half the beam thickness of jin% there are that must accompany bending, and the elastic stored energy as

substantial departures. The actual structure appears much stifezsult of this axial extension adds to the overall stiffness of the
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TABLE I
SUMMARY OF RESULTS FOREXAMPLES

Clamped | Pre-Stressed | Asymmetric | Asymmetric

Example Information Beam Beam Beam Plate
Nodes (N) 534 2664 2863 2814
Calculated modes (m') 3 16 30 30
Selected modes (m) 1 3 3 5
CoSolve-EM Actuation voltage

as fraction of pull-in 0.81 0.99 0.97 0.61
Capacitance calculations 20 100 200 250
Polynomial coefficients 9 229 401 863

Computation Times (sec)

Modal analyisis 22 274 487 696
CoSolve-EM 130 1532 1670 447
Modal projection 2 16 35 37
Capacitance calculation 120 5400 10200 7000
Capacitance fit and gradient 0.05 13 136 1844
Total time for CHURN (hours) 0.2 2.1 3.5 3.0

creates additional stored elastic energy, increasing the apparent
stiffness.
It will be shown in [2] that the CHURN approach can still be

g used in many cases, but not using the original linearized modes
5 ] as basis functions for calculating the strain energy. Instead, a
3 \\ ] slightly modified set of basis functions must be used.
a -08
S - ! V. CONCLUSIONS
8 -1 [.| —e—CoSolve-EM B ]
@ [ | —®— Linear Macromaodel ] We have presented a method for macromodeling two-con-
[ | —s— Nonlinear Macromodel . . . C
12 ductor electromechanical devices without dissipation, and we

- ] have successfully applied this to the electrostatic actuation of a
AAT suspended beam and an elastically supported plate with an ec-
centric electrode and unequal springs. The technique can be ex-
tended to more conductors by calculating the complete capac-
Fig. 12. Comparison of linear and nonlinear macromodels to quasi-staf@NCe matrix as functions of the modal displacements, some-
simulation with CoSolve-EM. thing that FastCap does quite efficiently. The technique can also
be extended to conservative energy domains that are external
structure. This kind of stress-stiffening is a well-known effect ito the elastic body, such as magnetostatic actuation [12]. How-
mechanics (see, for example [14]). ever, the method cannot handle dissipative effects, such as fluid
It is reasonable to ask whether the same CHURN methddmping. When dissipation is present, it is necessary to con-
that was used for finding the electrostatic co-energy could bi&ler both; andg as state variables so the state cannot be eval-
used to find an improved representation for the mechaniasted quasi-statically. One promising approach is the use of
stored energy, replacing the linearized formi&f(¢) in (10) a small number of explicitly calculated dynamical transients,
with a numerically derived analytical function that could bé&om which basis functions are extracted empirically [15], [16].
differentiated to yieldF;,,. The third curve (labeled nonlinear An important benefit of the automated macromodeling ap-
model) in Fig. 12 shows the modal amplitude versus voltage fproach presented here is that it minimizes the number of itera-
this case. It is seen that the nonlinear model derived with tkiee (time-consuming) self-consistent coupled simulations that
CHURN process applied to the elastic energy errs in the oppuoust be performed. A single such simulation is used to get es-
site direction, producing a macromodel that is much too stitimates of the size of the modal work space, but all simulations
We understand the reason for this: the modal displacemetitereafter are single energy domain, hence, fast. Further, as an
used in the electrostatic CHURN process constrain all three @déd to the designer, the macromodel is automatically exported
grees of freedom for every node. While this can yield accurads a circuit-simulator network element.
representations faexternaleffects, such as capacitance, it can Finally, we note that the most complex design studied here
be very incorrect fomternal effects. For example, when usingonly required a few hours for complete construction of the
modal displacements, Poisson contractions are prohibited, andcromodel (after meshing). This means that a designer could
axial displacements that accompany shear during bending ereate the design, and within one day evaluate the dynamical
prohibited. As a result, the nodal positions that result fromerformance of the device in a feedback loop. This appears to
applying a modal displacement are not at their quasi-stabie a very useful step toward speeding up the overall design
equilibrium positions, and this departure from equilibriunprocess without sacrificing accuracy.

Voltage
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