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Computer-Aided Generation of Nonlinear
Reduced-Order Dynamic Macromodels—II:

Stress-Stiffened Case
Jan E. Mehner, Lynn D. Gabbay, and Stephen D. Senturia, Fellow, IEEE

Abstract—Reduced-order dynamic macromodels to describe the
behavior of microelectromechanical system structures with stress
stiffening are presented in this paper. The approach is based on po-
tential and kinetic energy representations of selected fundamental
modes of motion, modified to take account of stress stiffening. En-
ergy data are calculated by several finite-element runs, fitted to
polynomial functions, and used to develop the equations of motion
according to Lagrangian mechanics. Accuracy and restrictions of
these macromodels will be shown. [449]

Index Terms—Basis-function methods, CAD, electrostatic actu-
ation, energy methods, macromodels, modal analysis, nonlinear vi-
brations, reduced-order models, stress stiffening.

I. INTRODUCTION

I N PART ONE of this paper [1], a highly automated method
for generating reduced-order dynamic macromodels for

electrostatically actuated microelectromechanical system
(MEMS) devices was presented. The approach was to use
selected linear elastic modes of the device as basis functions,
and to express the kinetic and potential energy in terms of
basis-function amplitudes and their time derivatives. It was
demonstrated that his procedure could indeed be executed
nearly automatically, requiring only a few inputs from the
designer to select parameters for the macromodel. However,
while the procedure works well for nonlinearities produced
outside the elastic body, such as the nonlinearelectrostatic
force between the plates of a parallel-plate capacitor with one
plate being flexible, it fails to capture the correctmechanical
structural stiffness when the deflections become comparable to
a typical thickness [1, Fig. 12]. This effect is generally referred
to as stress stiffening, and is a well-known effect in mechanics
(see, e.g., [2]).
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In simplest terms, stress stiffening results from the fact that
when a clamped structure bends, it must get longer; therefore,
it develops an axial stress. The elastic stored energy associated
with this axial stress adds to the overall structural stiffness. In
design, this nonlinearity should either be minimized for linear
sensor and actuator applications or can be used on purpose to
tune the stiffness or resonance frequencies for special problems
[3], [4].

In this paper, we show that while the linear normal modes
do not provide an adequate basis set with which to compute
elastic stored energy in stress-stiffened cases, it is nevertheless
possible to construct extremely accurate nonlinear stress-stiff-
ened macromodels with basis functions that are very close to
the linear normal modes. The failure of the linear normal modes
was already demonstrated in [1, Fig. 12], but some additional
discussion of the detailed reason for this failure is required here
to motivate the particular approach we have taken. Furthermore,
some background on the types of effects to expect in the pres-
ence of mechanical nonlinearities is useful.

The following section provides the theoretical background,
leading to a discussion in Section III of the approach we
have taken toward macromodeling of stress-stiffened devices.
Dynamic results of macromodel simulations are compared with
explicit nonlinear finite-element model (FEM) simulations
in Section IV.

II. THEORETICAL BACKGROUND

A. Modal Methods for Nonlinear Systems

The use of modal methods for linear structural analysis has
a long history (see, e.g., [5]). Finding efficient ways of using
modal methods for nonlinear systems is still a research subject.
A useful starting point is the review article of Rosenberg [6]. In-
vestigations have focused on discrete elements, such as beams
and plates, to explore the harmonic response. Of particular in-
terest are the effects of nonlinearities on system behavior such
as resonances, instabilities, and jump phenomena.

Recent contributions can be divided into two different ap-
proaches [7]. The first group assumes a harmonic time function
and determines the spatial deflection of a structure. Therefore,
one can use the method of harmonic balance [7]–[9] to obtain a
nonlinear boundary-value problem and solve this by the FEM.
This technique is preferred to compute the mode shape of non-
linear systems at resonance and the corresponding free-oscilla-
tion frequencies [10], [11].
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In the second group, which includes [1], the motion is
expanded in a series of spatial basis functions

(1)

where are the basis functions, are the generalized coor-
dinates, is the spatial vector, is the time of the system, and
where, in keeping with the notation of [1], is the static
equilibrium position of the structure, providing for possible re-
laxation of initial stresses upon release of the microstructure.
When the mechanical behavior is completely linear, it is useful
to use the linear modes of vibration for the, as was done in [1].
However, even when the problem is mechanically nonlinear, the
linear normal modes can serve as basis functions. The approach
can be outlined as follows [7].

1) Compute the linear modes of the elastic problem.
2) Substitute in the governing equation for the deflec-

tion (e.g., the Euler–Bernoulli equation for beams).
3) Obtain a system of -coupled second-order ordinary dif-

ferential equations for the .
4) Solve the equations by perturbation techniques [9] to

compute the dynamic response.
Both techniques have been successfully applied in modal dy-

namics. The second method, dealing with a series of linear mode
shapes, is preferred for simulating the transient response to ap-
plied external loads and is, therefore, used in this paper in a mod-
ified way.

Most of the existing studies deal with vibrations close to res-
onance [12], [13]. It has been proven that mode shapes with
invariant properties for nonlinear systems exist [6]. These de-
flection-dependent mode shapes are known as nonlinear normal
modes (NNM’s) and are surveyed in [7]. Modes are invariant
if the motion is comprised in that mode at all times and does
not generate any motion in the other modes. On the other hand,
stimulated motions of one of the linear modes would exchange
energy to other linear modes due to nonlinear mode coupling.
Nevertheless, this energy exchange can be captured by the cou-
pling terms that are obtained in 3) of the above procedure.

The approach we will take is to use a basis function expan-
sion. The primary benefit of this approach is that it can be for-
mulated independent of the details of the applied external forces
and, thus, is well suited for MEMS actuators.

B. Effects of Mechanical Nonlinearities

Many continuous systems, such as straight fixed-fixed beams
with clamped ends, have cubic nonlinearities arising from mid-
plane stretching. The dynamics of the fundamental mode of such
structures are described by the Duffing equation [7]

(2)

where is the generalized deflection,is the modal damping
ratio, is the natural frequency associated with the linear
system, determines the nonlinearity, and is an
externally applied generalized force.

In the following, we want to consider weakly nonlinear sys-
tems at harmonic excitation. One important feature
is resonance. According to the linear theory, resonance occurs

Fig. 1. Illustrating the frequency response for the Duffing equation with
positive" (stress stiffened).

Fig. 2. Steady-state response for
 = (! +�!)=3, with�! small.

when the driving frequency is close to the natural frequency
. This case is called primary or main resonance. The ampli-

tude in response to any harmonic excitation is determined by
the usual peaked resonance curve. However, for a system with
a Duffing nonlinearity, the frequency response is like that of
Fig. 1. Compared to the linear case , a hardening non-
linearity bends the curve to the right-hand side (stress
stiffening) and a softening nonlinearity would bend
the curve to the left-hand side. This bending of the frequency
response curve leads to multiple equilibrium states at some fre-
quencies and, hence, to jump phenomena. The state depends on
the initial conditions and the time dependence of the driving
function. Jumps in amplitudes occur if the system changes its
equilibrium state from one position to another one at the same
frequency.

Another attribute of nonlinear systems is the secondary res-
onance. Those further resonances occur if the free-oscillation
frequency is changed by the nonlinearity to exactly one-third
or three times the frequency of the excitation (the factor three
is due to the cubic nonlinearity). The first one is called subhar-
monic and the second one is called superharmonic resonance.

The transient response at subharmonic excitation is shown
in Fig. 2. Even in the presence of damping, which in a linear
system causes the natural response at frequencyto die out,
in the nonlinear system, the response at the resonance frequency
is actually driven and, hence, persists. The linear steady-state
response contains only the forced response, while the nonlinear
steady-state response includes both the forced response at the
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Fig. 3. Flexible beams supporting a rigid shuttle (subjected to axial and
transverse forces).

drive frequency and the third harmonic of the drive, which is
near to its resonance. Other nonlinear effects associated with
multiharmonic excitations are discussed in [7].

The accuracy of the modal dynamic can be improved if more
than one mode is taken into account. This is especially necessary
in the case of fixed-fixed beams when the curvature near the
clamps is high for large deflection amplitudes [15].

C. Stress Stiffening Examples

Stress stiffening has the effect of coupling the in-plane and
transverse displacements of beams and plates [14]. It is particu-
larly important in thin structures, such as microstructures, where
the bending stiffness is small compared to the axial stiffness.
Fig. 3 illustrates a simple example of this effect.

The arrangement in Fig. 3 shows a typical microsystem con-
figuration. A transverse force leads to a deflection of the
shuttle. As soon as an axial force acts on the beam, we see
nonlinear behavior. For moderate axial loads compared to the
buckling load, the stiffness of the beam is nearly a linear func-
tion with respect to the axial force

(3)

where is the linear stiffness and is the buckling force of
the beam.

Axial forces can be caused not only by external loads, but also
by internal stress or the deflection itself. For a beam with
clamped ends, we obtain

(4)

where is Young’s modulus and is the cross section of the
beam.

Equations (3) and (4) allow us to describe many systems that
have straight fixed-fixed beams. Using other beam shapes like
a folded beam design (see Fig. 4) can significantly reduce the
stress-stiffening behavior, but it is still significant. In the general
case, one has to solve the following Euler–Bernoulli equations:

(5)

(6)

Fig. 4. Different arrangements to realize a linear motion.

Fig. 5. Stiffness-deflection functions calculated with ANSYS.

where is the moment of inertia and is the transverse force
per unit length. Equations (5) and (6) are usually applied with
numerical techniques like the FEM or with perturbation tech-
niques. Fig. 4 shows three typical spring designs used for many
microstructures [3], [4].

Nonlinear stress stiffening occurs when the gradient with re-
spect to displacement of the strain energy due to stretching of
the neutral surface becomes comparable to the gradient of the
strain energy due to bending. For fixed-fixed beams, this occurs
when the deflection becomes comparable to the beam thick-
ness. For this class of microstructures, the stiffness ratio func-
tion is nearly independent of the beam length, thick-
ness, and Young’s modulus. Essentially, the linear deflection
range of crab legs can be increased by a longer leg lengthLe.
However, long legs decrease the in-plane rotational stiffness. A
folded flexure is used in many MEMS devices because of its
excellent linearity in a large deflection range [4]. These spring
arrangements show that a design of linear micromechanical sys-
tems is possible, but hard to realize (see Fig. 5).

On the other hand, many systems are designed to be non-
linear. Most resonant sensors make use of the stress stiffening
effect as a transducer principle. Examples are sensors where an
external load (acceleration, pressure) deflects beams or plates
and thereby instantly changes their stiffness and resonant fre-
quency. This shift of the resonant frequency is then picked up
capacitively.

Another important application of stress stiffening is the al-
teration of spring constants or oscillation frequencies during
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Fig. 6. Vibration sensor with frequency tuning based on stress stiffening [15].

the operation. This method can be used either to calibrate mi-
crostructures after the manufacturing process or to shift the stiff-
ness for special applications such as vibration sensors [15].

The lateral stiffness and, hence, the vibration frequency of the
element in Fig. 6, can be changed by the external voltage,
in exact analogy to Fig. 3. Also, because the axial forceis
controlled directly [see (3)], there is no amplitude dependence
of the stiffness or resonant frequency, as normally results from
electrostatic tuning methods [3].

III. M ACROMODEL CONSTRUCTION

A. General Approach

We now consider the application of the CHURN process pre-
sented in [1] to the problem of macromodel construction for
stress-stiffened problems. The CHURN process begins with a
vector of nodal displacements. We will assume an electrostat-
ically actuated elastic structure. The equations of motion, from
[1], are of the form

(7)

where is the nodally defined mechanical force, expressed as
the gradient of the mechanical potential energy function

(8)

and where is the nodally defined electrostatic force, ex-
pressed as the gradient of the electrostatic potential coenergy
function (note the change of sign associated with the
co-energy)

(9)

When the nodal displacements are represented as a superpo-
sition of linear normal modes , as in (1), the equations of
motion become

(10)

where is the global mass matrix (it is diagonal), is
the electrostatic actuation force, expressed in modal coordinates
using the CHURN process of [1], and is a new quantity,
the nownonlinearmechanical force, also expressed in modal
coordinates.

It was demonstrated in [1, Fig. 12] that the direct application
of the CHURN process to a mechanically nonlinear problem
gives a large overestimate of the stiffness. The reason is that the

CHURN process displaces all nodes of the structure, which for-
bids Poisson contractions and the axial motions that typically
accompany bending. Therefore, we decided to explore a modi-
fication of the CHURN process in which almost all degrees of
freedom for the nodes are allowed to relax to the equilibrium
position. This has the effect of restricting the class of problems
we can solve, but within this restricted set, we find that the re-
sults are excellent.

We will start from a slightly modified form of the modal equa-
tions of motion. The dynamics of theth modal amplitude can
be written

(11)
where instead of the explicit inclusion of electrostatic external
forces, we now allow for both point loads and distributed
loads , whether mechanical or, in the case of distributed
loads, electrostatic. The generalized mass can either be
calculated analytically from the mode shape

(12)

where is the density of the structure, or it can be obtained
from the result file of a finite-element modal analysis as the ap-
propriate diagonal element of , and where the integrals over
the external forces project each force into modal coordinates.

B. Specific Approximations

We now restrict our attention to MEMS systems in which: 1)
there is a dominant normal mode of motion; 2) there is a well-de-
fined neutral surface for the structure; and 3) the largest motion
in the structure is perpendicular to this neutral surface. While
this appears to be a severe restriction, many electrostatically ac-
tuated MEMS devices obey these restrictions.

The specific modification to the CHURN process is that in-
stead of imposing displacements on all degrees of freedom of all
nodes, a modal displacement is representedas a perpendicular
displacement of the nodes of the neutral surface in the dom-
inant direction; nodes not on the neutral surface are not con-
strained. In addition, degrees of freedom orthogonal to the dom-
inant displacement are not constrained for nodes in the neutral
surface. With these restricted nodal displacements as a boundary
condition, the elastic stored energy is then computed using
finite-element simulation, in exactly analogous fashion to the
computation of .

There are three important effects of this removal of nodal con-
straints when making a modal displacement. First, Poisson con-
tractions are allowed. Second, nodal displacements perpendic-
ular to the dominant direction are now allowed for nodes origi-
nally in the neutral surface. These two effects mean that the ex-
traneous strain energy of the original CHURN process is largely
avoided and, as will be shown below, the resulting elastic energy
is very close to the correct equilibrium value. The third effect is
more subtle. By allowing these various nodal relaxations, the re-
sulting final shape is no longer the same as the original normal
mode . The relaxed function, which we shall call ,
differs from by a small, but not unimportant amount. It
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is precisely this difference that allows the strain energy to be
correct for the equivalent modal displacement in the dominant
direction. Furthermore, we use the gradients of calculated
with these modified basis functions as the mechanical force in
the original equations of motion. In effect, we are saying that
by allowing extremely small changes to the basis functions, we
obtain a strain energy function whose gradient is a good approx-
imation to the elastic forces when expressed in-space.

In addition to these important assumptions about nodal con-
straints and strain-energy gradients, we use a perturbation ap-
proximation to calculate the strain energy, as explained in the
following section.

C. Computing the Strain Energy Function

Since we have restricted our attention to structures with a
dominant mode of deformation, we could imagine calculating
the elastic strain energy as a series of decreasing terms

(13)

where, assuming the modes are taken up in order of their impor-
tance, each square bracketed term is smaller than all terms that
precede it. We make one further approximation in this type of
series. We denote

(14)

and for as the corresponding square bracketed term
above

(15)

and we specifically approximate as

(16)

That is, when computing the strain energy contribution of
the higher order modes, we consider various combinations of
mode 1 with that higher order mode, but with all other higher
order mode amplitudes set to zero. This approximation has been
shown to yield insignificant errors, while greatly reducing the
number of FEM runs needed to span the-space for the selected
modes of interest.

Typically, the strain energy for structures with stress stiff-
ening can be expressed as a fourth-order polynomial in the
modal amplitudes. For a structure with five important modes,
it requires about 100 FEM simulations to compute the strain
energy. This strain energy is then fitted to a fourth-order
polynomial in the modal amplitudes, and appropriate gradients
are taken and inserted into the dynamic equations of motion.

Fig. 7. Sets of displacements for calculating the strain energy of a clamped
beam.

Fig. 8. Deflection error of mode shape 1 due to the node shift in axial direction
for a displacement of six times the beam thickness.

D. Example: Clamped Beam

Fig. 7 illustrates the various combinations of mode 1 and
higher order modes of a clamped beam used to compute the var-
ious contributions to the strain energy.

As stated earlier, since we allow nodes originally in the neu-
tral surface to displace perpendicular to the dominant direction
of motion, the modal functions differ from the original

even at the neutral surface, but the error that results in dis-
placement in the dominant direction is quite small. The error is a
function of the slope (first derivative of in the axial direction)
and was calculated analytically for a clamped beam (Fig. 8).
Since the slope is, in general, small for structures with stress
stiffening, this effect can be neglected for most problems.

With this assumption in mind, we can assess the accuracy of
the strain energy calculations based in the FEM against the exact
analytical solution for straight beams

(17)
where is the first and is the second derivative of the
bending line and is the beam length.

The relative strain energy error depends somewhat on the dis-
cretization, but is always below 0.5% for a reasonable meshed
structure (Fig. 9).

A very important feature of nonlinear mechanical systems is
that the strain energy functions may be asymmetric. Fig. 10 il-
lustrates that the energy minimum (dashed line) leaves the zero
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Fig. 9. Strain energy error as a function of the deflection amplitude.

Fig. 10. Contour plot of the asymmetric strain energy function
W = f(q1; q3) for a fixed-fixed beam.

Fig. 11. Force-deflection function and equilibrium positions of mode 3 with
respect to mode 1.

deflection line of mode 3 (solid line) as soon as mode 1 is
growing . This attribute has to be accurately captured
by the macromodel because it describes all interactions between
the modes, which are essential for the modal dynamics.

Calculating the modal force functions, which are the deriva-
tives of the strain energy with respect to the generalized co-
ordinate (at that deflection), we recognize that the curve does
not necessarily strike the origin (Fig. 11). That means as soon
as mode 1 is deflected, we get a force acting on other modes.
If there is enough time (quasi-static systems) and there are no
external forces, higher modes follow exactly the dashed line
in Fig. 10. As a consequence, the bending line of fixed–fixed
beams gets flatter with growing amplitudes (Fig. 12), as is ob-
served in numerous measurements [13].

After the set of finite-element simulations is completed, the
nonlinear function fitting is done by the Levenberg–Marquardt
method [16]. This well-known method is implemented in
MathCad [17], but is also available in public-domain software

Fig. 12. Typical shape change near the clamps of beams at large deflection
amplitudes.

Fig. 13. MathCad notation to solve the equations of motion.

tools. The function fitting has to be applied to the strain energy
functions according to (16) and all mode shapes. In case of
systems where a nearly rigid plate is supported by beams, the
mode shapes should be fitted for each beam separately.

E. Solving the Equations of Motion

Finally, the system is described by a nonlinear system of or-
dinary differential equations, which are solved numerically by
the Runge–Kutta scheme. An automated time-stepping algo-
rithm is recommended for problems with varying dynamics. No-
tice that in case of stiff equations (i.e., where the matrix gets
nearly singular), the numerical solution may oscillate or be un-
stable. In this frequently occurring case, one could replace the
Runge–Kutta with the Bulirsch–Stoer or Rosenbrock methods
[18]. The required syntax for a system with three relevant modes
is depicted in Fig. 13.

IV. RESULTS AND DISCUSSION

A. Quasi-Static Deflections

The accuracy, robustness, and convergence behavior of this
modeling approach will be demonstrated in this section through
a set of examples. The first example is an electrostatically ac-
tuated fixed–fixed beam suspended above an electrode strip.
The dimensions and material properties are the same as given
in [1, Fig. 8]. As was done in [1], we can use the dynamical
modal equations in dc steady state to calculate the static dis-
placement, and compare it to the full self-consistent three-di-
mensional (3-D) simulation with CoSolve-EM [19], which is a
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Fig. 14. Voltage-deflection function for a fixed–fixed beam.

Fig. 15. Deflection calculated by the macromodel and FEM.

part of the MEMCAD system.1 For the modal solution, the elec-
trostatic force is calculated analytically, neglecting the fringing
field (the beamwidth is much larger than gap separation).
Equilibrium occurs if the derivatives of the strain energy func-
tion are equal to the derivatives of the electrostatic co-energy

(18)

where is applied voltage and is the permittivity of air.
The comparison is shown in Fig 14. In sharp contrast with

[1, Fig. 12], we now see that the nonlinear macromodel agrees
nearly perfectly with the CoSolve-EM solution. The difference
between the nonlinear macromodel and the CoSolve-EM so-
lution is about 2% over the entire voltage range. This shows
that the various approximations concerning nodal degrees of
freedom and strain–energy calculations give very good results.

In the next example, a single point-load force acts on the same
beam instead of a distributed electrostatic load. In this case, the
influence of higher modes get stronger and the accuracy of their
interactions can be assessed. The first five modes are taken into
account and antisymmetric modes are neglected. The structure
is deflected far into the nonlinear range to positions about three
times the beam thickness. That means the stiffness increases
about 560% (Fig. 5). First, only mode 1, then modes 1 and 3, and
finally, modes 1, 3, and 5 were modeled. We obtain a deflection
error at the center of 5.6%, 3.9%, and 1.0%, respectively. Results
are compared against a nonlinear 3-D finite-element analysis
(Fig. 15).

Point loads are then applied at different position between the
support and center. Antisymmetric modes are now included.

1Microcosm Technologies, Cambridge, MA. http://www.memcad.com

Fig. 16. Dynamic response to a suddenly applied force at the center of a beam.

Fig. 17. Finite-element model of a plate with asymmetric support.

As long as the distance between the point of force application
and the support is more than 25% of the beam length, mode 1
can still be considered as dominant. The deflection error along
the beam axis increased slightly, but was always below 4%
(Fig. 15).

B. Undamped Transients

Now the transient behavior (without damping) is analyzed
for the same clamped-beam model. The structure is driven by a
suddenly applied point-load force at its center, and its deflection
is calculated as a function of time.

As known from nonlinear systems, the deflection is, in gen-
eral, a nonsinusoidal function. Mode 1 is most strongly distorted
(Fig. 16). Both marked elongations and have a different
curvature due to the deflection-dependent stiffness (curvature at

is much bigger than at ). Applying the Fourier decompo-
sition method, we observe higher harmonics of mode 1 in the
response spectrum. Those frequencies may lie very close to the
higher order modes of our structure and excite them strongly
(internal resonance). As a result of these interactions, beat fre-
quencies appear, especially if the structure is driven in the range
of stress stiffening.

The last example proves the accuracy for a plate with an
asymmetric support (Fig. 17). The same dimensions and ma-
terial properties are taken as in [1, Fig. 3]. The three lowest
modes of the structure are included in the macromodel. Two of
these modes are primarily rotational. However, even in case of
rotational degrees of freedom, the displacements of all finite-el-
ement nodes can be expressed by a translation (one dominant
direction) as long as the rotations are small. Fig. 18 shows that
the first three modes capture the transient behavior very well.
Macromodels are, in general, a little less accurate than appro-
priate finite-element solutions. This deviation is mainly caused
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Fig. 18. Response of Fig. 17 structure to a voltage jump.

by the limited number of modes, and not errors in the strain en-
ergy extraction. The achieved accuracy is sufficient for many
problems, especially if one considers the computational costs.

The time needed to establish a macromodel for structures
with stress stiffening is primarily defined by the finite-element
calculations. Considering five relevant modes, one needs about
100 quasi-static simulations. This is about the same time we
would estimate is required to simulate the transient behavior of
a microstructure during the first four oscillation periods. How-
ever, a macromodel once established can be used for many dif-
ferent load situations. We can include nonmechanical parts as
well as systems with energy dissipation.

The procedure presented here has not yet been automated to
the extent of the CHURN process in [1]. However, there does
not appear to be any fundamental reason why it cannot be done.
The designer must make more choices, such as identifying the
dominant mode and specifying the dominant direction of dis-
placement, and while our experience with the examples is very
good, it is quite difficult to establish robust error bounds for the
various assumptions and approximations used in this paper. That
is a subject for further study.

V. CONCLUSION

An important benefit of the macromodeling approach
presented here is the extension of computationally efficient
methods for generating nonlinear macromodels to systems
with stress stiffening. Stress stiffening is relevant in many
microstructures and is induced by the axial stress of structures
restrained at the ends. When such a structure has a dominant
deformation mode, it is now possible to construct accurate
dynamical models based on linear mode shapes. The macro-
model can then be used for any different load situation either
for steady-state or dynamic simulations.
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